Skip to main content

Science Articles Iboga and Ibogain

Neuroplasticity of Iboga and Ibogaine

References:
Lotsof, H. S., & Alexander, N. E. (2001). Case studies of ibogaine treatment: implications for patient management strategies. The Alkaloids. Chemistry and biology, 56, 293–313.
https://doi.org/10.1016/s0099-9598(01)56020-4

 

Deister, C., & Schmidt, C. E. (2006). Optimizing neurotrophic factor combinations for neurite outgrowth. Journal of neural engineering, 3(2), 172–179.

https://doi.org/10.1088/1741-2560/3/2/011

 

Lu,, B. & Figurov,, A. (1997). Role of Neurotrophins in Synapse Development and Plasticity. Reviews in the Neurosciences, 8(1), 1-12.
https://doi.org/10.1515/REVNEURO.1997.8.1.1

 

Zigova, T., Pencea, V., Wiegand, S. J., & Luskin, M. B. (1998). Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Molecular and cellular neurosciences, 11(4), 234–245.

https://doi.org/10.1006/mcne.1998.0684

 

Marton, S., González, B., Rodríguez-Bottero, S., Miquel, E., Martínez-Palma, L., Pazos, M., Prieto, J. P., Rodríguez, P., Sames, D., Seoane, G., Scorza, C., Cassina, P., & Carrera, I. (2019). Ibogaine Administration Modifies GDNF and BDNF Expression in Brain Regions Involved in Mesocorticolimbic and Nigral Dopaminergic Circuits. Frontiers in pharmacology, 10, 193.

https://doi.org/10.3389/fphar.2019.00193

 

Carnicella, S., He, D. Y., Yowell, Q. V., Glick, S. D., & Ron, D. (2010). Noribogaine, but not 18-MC, exhibits similar actions as ibogaine on GDNF expression and ethanol self-administration. Addiction Biology, 15(4), 424–433.

https://doi.org/10.1111/j.1369-1600.2010.00251.x

 

Angelucci, F., Ricci, V., Pomponi, M., Conte, G., Mathé, A. A., Attilio Tonali, P., & Bria, P. (2007). Chronic heroin and cocaine abuse is associated with decreased serum concentrations of the nerve growth factor and brain-derived neurotrophic factor. Journal of psychopharmacology (Oxford, England), 21(8), 820–825.

https://doi.org/10.1177/0269881107078491

 

Corne, R., & Mongeau, R. (2019). Utilisation des psychédéliques en psychiatrie : lien avec les neurotrophines [Neurotrophic mechanisms of psychedelic therapy]. Biologie aujourd’hui, 213(3-4), 121–129.

https://doi.org/10.1051/jbio/2019015

He, D. Y., & Ron, D. (2006). Autoregulation of glial cell line-derived neurotrophic factor expression: implications for the long-lasting actions of the anti-addiction drug, Ibogaine. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 20(13), 2420–2422.

https://doi.org/10.1096/fj.06-6394fje

 

Neal, D. T., Wood, W., & Quinn, J. M. (2006). Habits—A repeat performance. Current directions in psychological science, 15(4), 198-202.

https://doi.org/10.1111/j.1467-8721.2006.00435.x

 

Pitts, E. G., Li, D. C., & Gourley, S. L. (2018). Bidirectional coordination of actions and habits by TrkB in mice. Scientific reports, 8(1), 4495.

https://doi.org/10.1038/s41598-018-22560-x

 

Kaplan, G. B., Vasterling, J. J., & Vedak, P. C. (2010). Brain-derived neurotrophic factor in traumatic brain injury, post-traumatic stress disorder, and their comorbid conditions: role in pathogenesis and treatment. Behavioral pharmacology, 21(5-6), 427–437.

https://doi.org/10.1097/FBP.0b013e32833d8bc9

 

Cacialli, P., Palladino, A., & Lucini, C. (2018). Role of brain-derived neurotrophic factor during the regenerative response after traumatic brain injury in adult zebrafish. Neural regeneration research, 13(6), 941–944.

https://doi.org/10.4103/1673-5374.233430

 

Linker, R. A., Lee, D. H., Demir, S., Wiese, S., Kruse, N., Siglienti, I., Gerhardt, E., Neumann, H., Sendtner, M., Lühder, F., & Gold, R. (2010). Functional role of brain-derived neurotrophic factor in neuroprotective autoimmunity: therapeutic implications in a model of multiple sclerosis. Brain: a journal of neurology, 133(Pt 8), 2248–2263.

https://doi.org/10.1093/brain/awq179

 

Razavi, S., Nazem, G., Mardani, M., Esfandiari, E., Salehi, H., & Esfahani, S. H. (2015). Neurotrophic factors and their effects in the treatment of multiple sclerosis. Advanced biomedical research, 4, 53.

https://doi.org/10.4103/2277-9175.151570

 

Kalinowska-Lyszczarz, A., & Losy, J. (2012). The role of neurotrophins in multiple sclerosis-pathological and clinical implications. International journal of molecular sciences, 13(10), 13713–13725.

https://doi.org/10.3390/ijms131013713

 

Bus, B. A., Molendijk, M. L., Tendolkar, I., Penninx, B. W., Prickaerts, J., Elzinga, B. M., & Voshaar, R. C. (2015). Chronic depression is associated with a pronounced decrease in serum brain-derived neurotrophic factors over time. Molecular psychiatry, 20(5), 602–608.

https://doi.org/10.1038/mp.2014.83

 

Sjörs Dahlman, A., Blennow, K., Zetterberg, H., Glise, K., & Jonsdottir, I. H. (2019). Growth factors and neurotrophins in patients with stress-related exhaustion disorder. Psychoneuroendocrinology, 109, 104415.

https://doi.org/10.1016/j.psyneuen.2019.104415

 

Kotyuk, E., Keszler, G., Nemeth, N., Ronai, Z., Sasvari-Szekely, M., & Szekely, A. (2013). Glial cell line-derived neurotrophic factor (GDNF) as a novel candidate gene of anxiety. PloS one, 8(12), e80613.

https://doi.org/10.1371/journal.pone.0080613

 

Oo, T. F., Kholodilov, N., & Burke, R. E. (2003). Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience, 23(12), 5141–5148.

https://doi.org/10.1523/JNEUROSCI.23-12-05141.2003

 

Love, S., Plaha, P., Patel, N. K., Hotton, G. R., Brooks, D. J., & Gill, S. S. (2005). Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nature medicine, 11(7), 703–704.

https://doi.org/10.1038/nm0705-703

 

Gill, S. S., Patel, N. K., Hotton, G. R., O’Sullivan, K., McCarter, R., Bunnage, M., Brooks, D. J., Svendsen, C. N., & Heywood, P. (2003). Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinsons disease. Nature medicine, 9(5), 589–595.

https://doi.org/10.1038/nm850

Peterson, A. L., & Nutt, J. G. (2008). Treatment of Parkinson’s disease with trophic factors. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 5(2), 270–280. https://doi.org/10.1016/j.nurt.2008.02.003

Chan, S. J., Love, C., Spector, M., Cool, S. M., Nurcombe, V., & Lo, E. H. (2017). Endogenous regeneration: Engineering growth factors for stroke. Neurochemistry international, 107, 57–65.

https://doi.org/10.1016/j.neuint.2017.03.024

Iboga (Ibogaine) Science Resources

How does Iboga Work?

Bulling, S., Schicker, K., Zhang, Y. W., Steinkellner, T., Stockner, T., Gruber, C. W., Boehm, S., Freissmuth, M., Rudnick, G., Sitte, H. H., & Sandtner, W. (2012). The mechanistic basis for noncompetitive ibogaine inhibition of serotonin and dopamine transporters. The Journal of biological chemistry, 287(22), 18524–18534.

https://doi.org/10.1074/jbc.M112.343681

 

Glick, S. D., Maisonneuve, I. M., Kitchen, B. A., & Fleck, M. W. (2002). Antagonism of alpha 3 beta 4 nicotinic receptors as a strategy to reduce opioid and stimulant self-administration. European journal of pharmacology, 438(1-2), 99–105.

https://doi.org/10.1016/s0014-2999(02)01284-0

 

Baumann, M. H., Rothman, R. B., Pablo, J. P., & Mash, D. C. (2001). In vivo neurobiological effects of ibogaine and its O-desmethyl metabolite, 12-hydroxyibogamine (noribogaine), in rats. The Journal of pharmacology and experimental therapeutics, 297(2), 531–539.

Popik, P., Layer, R. T., Fossom, L. H., Benveniste, M., Geter-Douglass, B., Witkin, J. M., & Skolnick, P. (1995). NMDA antagonist properties of the putative antiaddictive drug, ibogaine. The Journal of pharmacology and experimental therapeutics, 275(2), 753–760.

Neuroplasticity

Marton, S., González, B., Rodríguez-Bottero, S., Miquel, E., Martínez-Palma, L., Pazos, M., Prieto, J. P., Rodríguez, P., Sames, D., Seoane, G., Scorza, C., Cassina, P., & Carrera, I. (2019). Ibogaine Administration Modifies GDNF and BDNF Expression in Brain Regions Involved in Mesocorticolimbic and Nigral Dopaminergic Circuits. Frontiers in pharmacology, 10, 193.

https://doi.org/10.3389/fphar.2019.00193


Lu, B., & Figurov, A. (1997). Role of neurotrophins in synapse development and plasticity. Reviews in the neurosciences, 8(1), 1–12.

https://doi.org/10.1515/revneuro.1997.8.1.1

 

Angelucci, F., Ricci, V., Pomponi, M., Conte, G., Mathé, A. A., Attilio Tonali, P., & Bria, P. (2007). Chronic heroin and cocaine abuse is associated with decreased serum concentrations of the nerve growth factor and brain-derived neurotrophic factor. Journal of psychopharmacology (Oxford, England), 21(8), 820–825.
https://doi.org/10.1177/0269881107078491

Zigova, T., Pencea, V., Wiegand, S. J., & Luskin, M. B. (1998). Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Molecular and cellular neurosciences, 11(4), 234–245.
https://doi.org/10.1006/mcne.1998.0684

Treating Mood, Depression, and Anxiety

Mash, D. C., Staley, J. K., Baumann, M. H., Rothman, R. B., & Hearn, W. L. (1995). Identification of a primary metabolite of ibogaine that targets serotonin transporters and elevates serotonin. Life sciences, 57(3), PL45–PL50.

https://doi.org/10.1016/0024-3205(95)00273-9

 

Noller, G. E., Frampton, C. M., & Yazar-Klosinski, B. (2018). Ibogaine treatment outcomes for opioid dependence from a twelve-month follow-up observational study. The American journal of drug and alcohol abuse, 44(1), 37–46.

https://doi.org/10.1080/00952990.2017.1310218

 

Mash, D. C., Kovera, C. A., Pablo, J., Tyndale, R. F., Ervin, F. D., Williams, I. C., Singleton, E. G., & Mayor, M. (2000). Ibogaine: complex pharmacokinetics, concerns for safety, and preliminary efficacy measures. Annals of the New York Academy of Sciences, 914, 394–401.

https://doi.org/10.1111/j.1749-6632.2000.tb05213.x

 

Forsyth, B., Machado, L., Jowett, T., Jakobi, H., Garbe, K., Winter, H., & Glue, P. (2016). Effects of low dose ibogaine on subjective mood state and psychological performance. Journal of ethnopharmacology, 189, 10–13.

https://doi.org/10.1016/j.jep.2016.05.022

Treating DETOX and Withdrawal Symptoms

Lotsof, H. S., & Alexander, N. E. (2001). Case studies of ibogaine treatment: implications for patient management strategies. The Alkaloids. Chemistry and biology, 56, 293–313. https://doi.org/10.1016/s0099-9598(01)56020-4

Marton, S., González, B., Rodríguez-Bottero, S., Miquel, E., Martínez-Palma, L., Pazos, M., Prieto, J. P., Rodríguez, P., Sames, D., Seoane, G., Scorza, C., Cassina, P., & Carrera, I. (2019). Ibogaine Administration Modifies GDNF and BDNF Expression in Brain Regions Involved in Mesocorticolimbic and Nigral Dopaminergic Circuits. Frontiers in pharmacology, 10, 193.

https://doi.org/10.3389/fphar.2019.00193

 

Lu, B., & Figurov, A. (1997). Role of neurotrophins in synapse development and plasticity. Reviews in the neurosciences, 8(1), 1–12.

https://doi.org/10.1515/revneuro.1997.8.1.1

 

Angelucci, F., Ricci, V., Pomponi, M., Conte, G., Mathé, A. A., Attilio Tonali, P., & Bria, P. (2007). Chronic heroin and cocaine abuse is associated with decreased serum concentrations of the nerve growth factor and brain-derived neurotrophic factor. Journal of psychopharmacology (Oxford, England), 21(8), 820–825.

https://doi.org/10.1177/0269881107078491

 

Zigova, T., Pencea, V., Wiegand, S. J., & Luskin, M. B. (1998). Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Molecular and cellular neurosciences, 11(4), 234–245.

https://doi.org/10.1006/mcne.1998.0684

 

Mash, D. C., Duque, L., Page, B., & Allen-Ferdinand, K. (2018). Ibogaine Detoxification Transitions Opioid and Cocaine Abusers Between Dependence and Abstinence: Clinical Observations and Treatment Outcomes. Frontiers in pharmacology, 9, 529.

https://doi.org/10.3389/fphar.2018.00529

 

Alper, K. R., Lotsof, H. S., Frenken, G. M., Luciano, D. J., & Bastiaans, J. (1999). Treatment of acute opioid withdrawal with ibogaine. The American journal on addictions, 8(3), 234–242.

https://doi.org/10.1080/105504999305848

 

Alper, K. R., Lotsof, H. S., & Kaplan, C. D. (2008). The ibogaine medical subculture. Journal of ethnopharmacology, 115(1), 9–24.

https://doi.org/10.1016/j.jep.2007.08.034

 

Maciulaitis, R., Kontrimaviciute, V., Bressolle, F. M., & Briedis, V. (2008). Ibogaine, an anti-addictive drug: pharmacology and time to go further in development. A narrative review. Human & experimental toxicology, 27(3), 181–194.

https://doi.org/10.1177/0960327107087802

 

Srivastava, A. B., Mariani, J. J., & Levin, F. R. (2020). New directions in the treatment of opioid withdrawal. Lancet (London, England), 395(10241), 1938–1948.

https://doi.org/10.1016/S0140-6736(20)30852-7

 

Baumann, M. H., Pablo, J. P., Ali, S. F., Rothman, R. B., & Mash, D. C. (2000). Noribogaine (12-hydroxyibogamine): a biologically active metabolite of the antiaddictive drug ibogaine. Annals of the New York Academy of Sciences, 914, 354–368.

https://doi.org/10.1111/j.1749-6632.2000.tb05210.x

 

Brown, T. K., & Alper, K. (2018). Treatment of opioid use disorder with ibogaine: detoxification and drug use outcomes. The American journal of drug and alcohol abuse, 44(1), 24–36.

https://doi.org/10.1080/00952990.2017.1320802

Treating PTSD with Iboga

Olszewski, T. M., & Varrasse, J. F. (2005). The neurobiology of PTSD: implications for nurses. Journal of psychosocial nursing and mental health services, 43(6), 40–47.

https://doi.org/10.3928/02793695-20050601-09

 

Davis, A. K., Averill, L. A., Sepeda, N. D., Barsuglia, J. P., & Amoroso, T. (2020). Psychedelic Treatment for Trauma-Related Psychological and Cognitive Impairment Among US Special Operations Forces Veterans. Chronic Stress.

https://doi.org/10.1177/2470547020939564

Treating Viruses and Bacterial Infections with Iboga

Rastogi, N., Abaul, J., Goh, K. S., Devallois, A., Philogène, E., & Bourgeois, P. (1998). Antimycobacterial activity of chemically defined natural substances from the Caribbean flora in Guadeloupe. FEMS immunology and medical microbiology, 20(4), 267–273.

https://doi.org/10.1111/j.1574-695X.1998.tb01136.x

 

Silva, E. M., Cirne-Santos, C. C., Frugulhetti, I. C., Galvão-Castro, B., Saraiva, E. M., Kuehne, M. E., & Bou-Habib, D. C. (2004). Anti-HIV-1 activity of the Iboga alkaloid congener 18-methoxycoronaridine. Planta medica, 70(9), 808–812.

https://doi.org/10.1055/s-2004-827227

 

Yordanov, M., Dimitrova, P., Patkar, S., Saso, L., & Ivanovska, N. (2008). Inhibition of Candida albicans extracellular enzyme activity by selected natural substances and their application in Candida infection. Canadian journal of microbiology, 54(6), 435–440.

https://doi.org/10.1139/w08-029

 

Yordanov, M., Dimitrova, P., Patkar, S., Falcocchio, S., Xoxi, E., Saso, L., & Ivanovska, N. (2005). Ibogaine reduces organ colonization in murine systemic and gastrointestinal Candida albicans infections. Journal of medical microbiology, 54(Pt 7), 647–653.

https://doi.org/10.1099/jmm.0.45919-0

Treating Parkinson’s

Kowal, S. L., Dall, T. M., Chakrabarti, R., Storm, M. V., & Jain, A. (2013). The current and projected economic burden of Parkinson’s disease in the United States. Movement disorders : official journal of the Movement Disorder Society, 28(3), 311–318.

https://doi.org/10.1002/mds.25292

 

Davie C. A. (2008). A review of Parkinson’s disease. British medical bulletin, 86, 109–127.

https://doi.org/10.1093/bmb/ldn013

 

Schaser, A. J., Osterberg, V. R., Dent, S. E., Stackhouse, T. L., Wakeham, C. M., Boutros, S. W., Weston, L. J., Owen, N., Weissman, T. A., Luna, E., Raber, J., Luk, K. C., McCullough, A. K., Woltjer, R. L., & Unni, V. K. (2019). Alpha-synuclein is a DNA binding protein that modulates DNA repair with implications for Lewy body disorders. Scientific reports, 9(1), 10919.

https://doi.org/10.1038/s41598-019-47227-z

 

Sulzer, D., Alcalay, R. N., Garretti, F., Cote, L., Kanter, E., Agin-Liebes, J., Liong, C., McMurtrey, C., Hildebrand, W. H., Mao, X., Dawson, V. L., Dawson, T. M., Oseroff, C., Pham, J., Sidney, J., Dillon, M. B., Carpenter, C., Weiskopf, D., Phillips, E., Mallal, S., … Sette, A. (2017). T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature, 546(7660), 656–661.

https://doi.org/10.1038/nature22815

 

Lindestam Arlehamn, C. S., Dhanwani, R., Pham, J., Kuan, R., Frazier, A., Rezende Dutra, J., Phillips, E., Mallal, S., Roederer, M., Marder, K. S., Amara, A. W., Standaert, D. G., Goldman, J. G., Litvan, I., Peters, B., Sulzer, D., & Sette, A. (2020). α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nature communications, 11(1), 1875.

https://doi.org/10.1038/s41467-020-15626-w

 

Peterson, A. L., & Nutt, J. G. (2008). Treatment of Parkinson’s disease with trophic factors. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 5(2), 270–280.

https://doi.org/10.1016/j.nurt.2008.02.003

 

Oo, T. F., Kholodilov, N., & Burke, R. E. (2003). Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience, 23(12), 5141–5148.

https://doi.org/10.1523/JNEUROSCI.23-12-05141.2003

 

Gill, S. S., Patel, N. K., Hotton, G. R., O’Sullivan, K., McCarter, R., Bunnage, M., Brooks, D. J., Svendsen, C. N., & Heywood, P. (2003). Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nature medicine, 9(5), 589–595.

https://doi.org/10.1038/nm850

 

Love, S., Plaha, P., Patel, N. K., Hotton, G. R., Brooks, D. J., & Gill, S. S. (2005). Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nature medicine, 11(7), 703–704.

https://doi.org/10.1038/nm0705-703

 

Carnicella, S., He, D. Y., Yowell, Q. V., Glick, S. D., & Ron, D. (2010). Noribogaine, but not 18-MC, exhibits similar actions as ibogaine on GDNF expression and ethanol self-administration. Addiction biology, 15(4), 424–433.

https://doi.org/10.1111/j.1369-1600.2010.00251.x

 

He, D. Y., & Ron, D. (2006). Autoregulation of glial cell line-derived neurotrophic factor expression: implications for the long-lasting actions of the anti-addiction drug, Ibogaine. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 20(13), 2420–2422.

https://doi.org/10.1096/fj.06-6394fje

 

He, D. Y., & Ron, D. (2006). Autoregulation of glial cell line-derived neurotrophic factor expression: implications for the long-lasting actions of the anti-addiction drug, Ibogaine. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 20(13), 2420–2422.

https://doi.org/10.1096/fj.06-6394fje

 

Dustin R., Mandel Ronald J. “The Future of GDNF in Parkinson’s Disease” Frontiers in Aging Neuroscience VOLUME 12 2020 PAGE 388

https://www.frontiersin.org/articles/10.3389/fnagi.2020.593572/full

Treating Auto-Immune Disease

Jia, J., Cheng, J., Wang, C., & Zhen, X. (2018). Sigma-1 Receptor-Modulated Neuroinflammation in Neurological Diseases. Frontiers in cellular neuroscience, 12, 314.

https://doi.org/10.3389/fncel.2018.00314

 

Oxombre, B., Lee-Chang, C., Duhamel, A., Toussaint, M., Giroux, M., Donnier-Maréchal, M., Carato, P., Lefranc, D., Zéphir, H., Prin, L., Melnyk, P., & Vermersch, P. (2015). High-affinity σ1 protein agonist reduces clinical and pathological signs of experimental autoimmune encephalomyelitis. British journal of pharmacology, 172(7), 1769–1782.

https://doi.org/10.1111/bph.13037

 

Thompson, C., & Szabo, A. (2020). Psychedelics as a novel approach to treating autoimmune conditions. Immunology letters, 228, 45–54.

https://doi.org/10.1016/j.imlet.2020.10.001

Ayahuascha vs iboga

https://pubmed.ncbi.nlm.nih.gov/26973523/

https://pubmed.ncbi.nlm.nih.gov/27683542/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522265/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5144684/

https://pubmed.ncbi.nlm.nih.gov/27918874/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5952178/
https://pubmed.ncbi.nlm.nih.gov/25806551/
https://pubmed.ncbi.nlm.nih.gov/29903051/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895707/
https://pubmed.ncbi.nlm.nih.gov/27230395/
https://pubmed.ncbi.nlm.nih.gov/22451652/
https://pubmed.ncbi.nlm.nih.gov/11303040/
https://pubmed.ncbi.nlm.nih.gov/11906717/
https://www.frontiersin.org/articles/10.3389/fphar.2019.00193/full
https://www.sciencedirect.com/science/article/pii/S0165247820303977
https://pubmed.ncbi.nlm.nih.gov/9626931/
https://pubmed.ncbi.nlm.nih.gov/15386189/
https://cdnsciencepub.com/doi/10.1139/W08-029?mobileUi=0&
https://pubmed.ncbi.nlm.nih.gov/15947429/
https://pubmed.ncbi.nlm.nih.gov/30272050/
https://www.tandfonline.com/doi/full/10.1080/00952990.2017.1310218
https://pubmed.ncbi.nlm.nih.gov/11085338/
https://journals.sagepub.com/doi/10.1177/2470547020939564

Success rate iboga

Zanda, M. T., & Fattore, L. (2017). Novel Psychoactive Substances: A New Behavioral and Mental Health Threat. Addictive Substances and Neurological Disease: Alcohol, Tobacco, Caffeine, and Drugs of Abuse in Everyday Lifestyles, 341–353.

https://doi.org/10.1016/B978-0-12-805373-7.00029-3

 

Wells, G. B., Lopez, M. C., & Tanaka, J. C. (1999). The effects of ibogaine on dopamine and serotonin transport in rat brain synaptosomes. Brain research bulletin, 48(6), 641–647.

https://doi.org/10.1016/s0361-9230(99)00053-2

 

He, D. Y., & Ron, D. (2006). Autoregulation of glial cell line-derived neurotrophic factor expression: implications for the long-lasting actions of the anti-addiction drug, Ibogaine. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 20(13), 2420–2422.

https://doi.org/10.1096/fj.06-6394fje

 

Staley, J. K., Ouyang, Q., Pablo, J., Hearn, W. L., Flynn, D. D., Rothman, R. B., Rice, K. C., & Mash, D. C. (1996). Pharmacological screen for activities of 12-hydroxyibogamine: a primary metabolite of the indole alkaloid ibogaine. Psychopharmacology, 127(1), 10–18.

https://doi.org/10.1007/BF02805969

 

Mash, D. C., Staley, J. K., Baumann, M. H., Rothman, R. B., & Hearn, W. L. (1995). Identification of a primary metabolite of ibogaine that targets serotonin transporters and elevates serotonin. Life sciences, 57(3), PL45–PL50.

https://doi.org/10.1016/0024-3205(95)00273-9

 

Baumann, M. H., Pablo, J. P., Ali, S. F., Rothman, R. B., & Mash, D. C. (2000). Noribogaine (12-hydroxyibogamine): a biologically active metabolite of the antiaddictive drug ibogaine. Annals of the New York Academy of Sciences, 914, 354–368.

https://doi.org/10.1111/j.1749-6632.2000.tb05210.x

 

Glick, S. D., Kuehne, M. E., Raucci, J., Wilson, T. E., Larson, D., Keller, R. W., Jr, & Carlson, J. N. (1994). Effects of iboga alkaloids on morphine and cocaine self-administration in rats: relationship to tremorigenic effects and to effects on dopamine release in nucleus accumbens and striatum. Brain research, 657(1-2), 14–22.

https://doi.org/10.1016/0006-8993(94)90948-2

 

Popik, P., & Skolnick, P. (1999). Pharmacology of Ibogaine and Ibogaine-Related Alkaloids. Alkaloids: Chemistry and Biology, 52(C), 197–231.

https://doi.org/10.1016/S0099-9598(08)60027-9

 

Hashimoto, K., & Ishiwata, K. (2006). Sigma receptor ligands: possible application as therapeutic drugs and as radiopharmaceuticals. Current pharmaceutical design, 12(30), 3857–3876.

https://doi.org/10.2174/138161206778559614

 

Noller, G. E., Frampton, C. M., & Yazar-Klosinski, B. (2018). Ibogaine treatment outcomes for opioid dependence from a twelve-month follow-up observational study. The American journal of drug and alcohol abuse, 44(1), 37–46.

https://doi.org/10.1080/00952990.2017.1310218

 

Davis, A. K., Barsuglia, J. P., Windham-Herman, A. M., Lynch, M., & Polanco, M. (2017). Subjective effectiveness of ibogaine treatment for problematic opioid consumption: Short- and long-term outcomes and current psychological functioning. Journal of psychedelic studies, 1(2), 65–73.

https://doi.org/10.1556/2054.01.2017.009

 

Schenberg, E. E., de Castro Comis, M. A., Chaves, B. R., & da Silveira, D. X. (2014). Treating drug dependence with the aid of ibogaine: a retrospective study. Journal of psychopharmacology (Oxford, England), 28(11), 993–1000.

https://doi.org/10.1177/0269881114552713

 

Davis, A. K., Averill, L. A., Sepeda, N. D., Barsuglia, J. P., & Amoroso, T. (2020). Psychedelic Treatment for Trauma-Related Psychological and Cognitive Impairment Among US Special Operations Forces Veterans. Chronic stress (Thousand Oaks, Calif.), 4, 2470547020939564.

https://doi.org/10.1177/2470547020939564

 

Gill, S. S., Patel, N. K., Hotton, G. R., O’Sullivan, K., McCarter, R., Bunnage, M., Brooks, D. J., Svendsen, C. N., & Heywood, P. (2003). Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nature medicine, 9(5), 589–595.

https://doi.org/10.1038/nm850

 

Koenig, X., Kovar, M., Boehm, S., Sandtner, W., & Hilber, K. (2014). Anti-addiction drug ibogaine inhibits hERG channels: a cardiac arrhythmia risk. Addiction biology, 19(2), 237–239.

https://doi.org/10.1111/j.1369-1600.2012.00447.x