Neuroplasticity of Iboga and Ibogaine
References:
Lotsof, H. S., & Alexander, N. E. (2001). Case studies of ibogaine treatment: implications for patient management strategies. The Alkaloids. Chemistry and biology, 56, 293–313.
https://doi.org/10.1016/s0099-9598(01)56020-4
Deister, C., & Schmidt, C. E. (2006). Optimizing neurotrophic factor combinations for neurite outgrowth. Journal of neural engineering, 3(2), 172–179.
https://doi.org/10.1088/1741-2560/3/2/011
Lu,, B. & Figurov,, A. (1997). Role of Neurotrophins in Synapse Development and Plasticity. Reviews in the Neurosciences, 8(1), 1-12.
https://doi.org/10.1515/REVNEURO.1997.8.1.1
Zigova, T., Pencea, V., Wiegand, S. J., & Luskin, M. B. (1998). Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Molecular and cellular neurosciences, 11(4), 234–245.
https://doi.org/10.1006/mcne.1998.0684
Marton, S., González, B., Rodríguez-Bottero, S., Miquel, E., Martínez-Palma, L., Pazos, M., Prieto, J. P., Rodríguez, P., Sames, D., Seoane, G., Scorza, C., Cassina, P., & Carrera, I. (2019). Ibogaine Administration Modifies GDNF and BDNF Expression in Brain Regions Involved in Mesocorticolimbic and Nigral Dopaminergic Circuits. Frontiers in pharmacology, 10, 193.
https://doi.org/10.3389/fphar.2019.00193
Carnicella, S., He, D. Y., Yowell, Q. V., Glick, S. D., & Ron, D. (2010). Noribogaine, but not 18-MC, exhibits similar actions as ibogaine on GDNF expression and ethanol self-administration. Addiction Biology, 15(4), 424–433.
https://doi.org/10.1111/j.1369-1600.2010.00251.x
Angelucci, F., Ricci, V., Pomponi, M., Conte, G., Mathé, A. A., Attilio Tonali, P., & Bria, P. (2007). Chronic heroin and cocaine abuse is associated with decreased serum concentrations of the nerve growth factor and brain-derived neurotrophic factor. Journal of psychopharmacology (Oxford, England), 21(8), 820–825.
https://doi.org/10.1177/0269881107078491
Corne, R., & Mongeau, R. (2019). Utilisation des psychédéliques en psychiatrie : lien avec les neurotrophines [Neurotrophic mechanisms of psychedelic therapy]. Biologie aujourd’hui, 213(3-4), 121–129.
https://doi.org/10.1051/jbio/2019015
He, D. Y., & Ron, D. (2006). Autoregulation of glial cell line-derived neurotrophic factor expression: implications for the long-lasting actions of the anti-addiction drug, Ibogaine. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 20(13), 2420–2422.
https://doi.org/10.1096/fj.06-6394fje
Neal, D. T., Wood, W., & Quinn, J. M. (2006). Habits—A repeat performance. Current directions in psychological science, 15(4), 198-202.
https://doi.org/10.1111/j.1467-8721.2006.00435.x
Pitts, E. G., Li, D. C., & Gourley, S. L. (2018). Bidirectional coordination of actions and habits by TrkB in mice. Scientific reports, 8(1), 4495.
https://doi.org/10.1038/s41598-018-22560-x
Kaplan, G. B., Vasterling, J. J., & Vedak, P. C. (2010). Brain-derived neurotrophic factor in traumatic brain injury, post-traumatic stress disorder, and their comorbid conditions: role in pathogenesis and treatment. Behavioral pharmacology, 21(5-6), 427–437.
https://doi.org/10.1097/FBP.0b013e32833d8bc9
Cacialli, P., Palladino, A., & Lucini, C. (2018). Role of brain-derived neurotrophic factor during the regenerative response after traumatic brain injury in adult zebrafish. Neural regeneration research, 13(6), 941–944.
https://doi.org/10.4103/1673-5374.233430
Linker, R. A., Lee, D. H., Demir, S., Wiese, S., Kruse, N., Siglienti, I., Gerhardt, E., Neumann, H., Sendtner, M., Lühder, F., & Gold, R. (2010). Functional role of brain-derived neurotrophic factor in neuroprotective autoimmunity: therapeutic implications in a model of multiple sclerosis. Brain: a journal of neurology, 133(Pt 8), 2248–2263.
https://doi.org/10.1093/brain/awq179
Razavi, S., Nazem, G., Mardani, M., Esfandiari, E., Salehi, H., & Esfahani, S. H. (2015). Neurotrophic factors and their effects in the treatment of multiple sclerosis. Advanced biomedical research, 4, 53.
https://doi.org/10.4103/2277-9175.151570
Kalinowska-Lyszczarz, A., & Losy, J. (2012). The role of neurotrophins in multiple sclerosis-pathological and clinical implications. International journal of molecular sciences, 13(10), 13713–13725.
https://doi.org/10.3390/ijms131013713
Bus, B. A., Molendijk, M. L., Tendolkar, I., Penninx, B. W., Prickaerts, J., Elzinga, B. M., & Voshaar, R. C. (2015). Chronic depression is associated with a pronounced decrease in serum brain-derived neurotrophic factors over time. Molecular psychiatry, 20(5), 602–608.
https://doi.org/10.1038/mp.2014.83
Sjörs Dahlman, A., Blennow, K., Zetterberg, H., Glise, K., & Jonsdottir, I. H. (2019). Growth factors and neurotrophins in patients with stress-related exhaustion disorder. Psychoneuroendocrinology, 109, 104415.
https://doi.org/10.1016/j.psyneuen.2019.104415
Kotyuk, E., Keszler, G., Nemeth, N., Ronai, Z., Sasvari-Szekely, M., & Szekely, A. (2013). Glial cell line-derived neurotrophic factor (GDNF) as a novel candidate gene of anxiety. PloS one, 8(12), e80613.
https://doi.org/10.1371/journal.pone.0080613
Oo, T. F., Kholodilov, N., & Burke, R. E. (2003). Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience, 23(12), 5141–5148.
https://doi.org/10.1523/JNEUROSCI.23-12-05141.2003
Love, S., Plaha, P., Patel, N. K., Hotton, G. R., Brooks, D. J., & Gill, S. S. (2005). Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nature medicine, 11(7), 703–704.
https://doi.org/10.1038/nm0705-703
Gill, S. S., Patel, N. K., Hotton, G. R., O’Sullivan, K., McCarter, R., Bunnage, M., Brooks, D. J., Svendsen, C. N., & Heywood, P. (2003). Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinsons disease. Nature medicine, 9(5), 589–595.
Peterson, A. L., & Nutt, J. G. (2008). Treatment of Parkinson’s disease with trophic factors. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 5(2), 270–280. https://doi.org/10.1016/j.nurt.2008.02.003
Chan, S. J., Love, C., Spector, M., Cool, S. M., Nurcombe, V., & Lo, E. H. (2017). Endogenous regeneration: Engineering growth factors for stroke. Neurochemistry international, 107, 57–65.
Iboga (Ibogaine) Science Resources
How does Iboga Work?
Bulling, S., Schicker, K., Zhang, Y. W., Steinkellner, T., Stockner, T., Gruber, C. W., Boehm, S., Freissmuth, M., Rudnick, G., Sitte, H. H., & Sandtner, W. (2012). The mechanistic basis for noncompetitive ibogaine inhibition of serotonin and dopamine transporters. The Journal of biological chemistry, 287(22), 18524–18534.
https://doi.org/10.1074/jbc.M112.343681
Glick, S. D., Maisonneuve, I. M., Kitchen, B. A., & Fleck, M. W. (2002). Antagonism of alpha 3 beta 4 nicotinic receptors as a strategy to reduce opioid and stimulant self-administration. European journal of pharmacology, 438(1-2), 99–105.
https://doi.org/10.1016/s0014-2999(02)01284-0
Baumann, M. H., Rothman, R. B., Pablo, J. P., & Mash, D. C. (2001). In vivo neurobiological effects of ibogaine and its O-desmethyl metabolite, 12-hydroxyibogamine (noribogaine), in rats. The Journal of pharmacology and experimental therapeutics, 297(2), 531–539.
Popik, P., Layer, R. T., Fossom, L. H., Benveniste, M., Geter-Douglass, B., Witkin, J. M., & Skolnick, P. (1995). NMDA antagonist properties of the putative antiaddictive drug, ibogaine. The Journal of pharmacology and experimental therapeutics, 275(2), 753–760.
Neuroplasticity
Marton, S., González, B., Rodríguez-Bottero, S., Miquel, E., Martínez-Palma, L., Pazos, M., Prieto, J. P., Rodríguez, P., Sames, D., Seoane, G., Scorza, C., Cassina, P., & Carrera, I. (2019). Ibogaine Administration Modifies GDNF and BDNF Expression in Brain Regions Involved in Mesocorticolimbic and Nigral Dopaminergic Circuits. Frontiers in pharmacology, 10, 193.
https://doi.org/10.3389/fphar.2019.00193
Lu, B., & Figurov, A. (1997). Role of neurotrophins in synapse development and plasticity. Reviews in the neurosciences, 8(1), 1–12.
https://doi.org/10.1515/revneuro.1997.8.1.1
Angelucci, F., Ricci, V., Pomponi, M., Conte, G., Mathé, A. A., Attilio Tonali, P., & Bria, P. (2007). Chronic heroin and cocaine abuse is associated with decreased serum concentrations of the nerve growth factor and brain-derived neurotrophic factor. Journal of psychopharmacology (Oxford, England), 21(8), 820–825.
https://doi.org/10.1177/0269881107078491
Zigova, T., Pencea, V., Wiegand, S. J., & Luskin, M. B. (1998). Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Molecular and cellular neurosciences, 11(4), 234–245.
https://doi.org/10.1006/mcne.1998.0684
Treating Mood, Depression, and Anxiety
Mash, D. C., Staley, J. K., Baumann, M. H., Rothman, R. B., & Hearn, W. L. (1995). Identification of a primary metabolite of ibogaine that targets serotonin transporters and elevates serotonin. Life sciences, 57(3), PL45–PL50.
https://doi.org/10.1016/0024-3205(95)00273-9
Noller, G. E., Frampton, C. M., & Yazar-Klosinski, B. (2018). Ibogaine treatment outcomes for opioid dependence from a twelve-month follow-up observational study. The American journal of drug and alcohol abuse, 44(1), 37–46.
https://doi.org/10.1080/00952990.2017.1310218
Mash, D. C., Kovera, C. A., Pablo, J., Tyndale, R. F., Ervin, F. D., Williams, I. C., Singleton, E. G., & Mayor, M. (2000). Ibogaine: complex pharmacokinetics, concerns for safety, and preliminary efficacy measures. Annals of the New York Academy of Sciences, 914, 394–401.
https://doi.org/10.1111/j.1749-6632.2000.tb05213.x
Forsyth, B., Machado, L., Jowett, T., Jakobi, H., Garbe, K., Winter, H., & Glue, P. (2016). Effects of low dose ibogaine on subjective mood state and psychological performance. Journal of ethnopharmacology, 189, 10–13.
Treating DETOX and Withdrawal Symptoms
Lotsof, H. S., & Alexander, N. E. (2001). Case studies of ibogaine treatment: implications for patient management strategies. The Alkaloids. Chemistry and biology, 56, 293–313. https://doi.org/10.1016/s0099-9598(01)56020-4
Marton, S., González, B., Rodríguez-Bottero, S., Miquel, E., Martínez-Palma, L., Pazos, M., Prieto, J. P., Rodríguez, P., Sames, D., Seoane, G., Scorza, C., Cassina, P., & Carrera, I. (2019). Ibogaine Administration Modifies GDNF and BDNF Expression in Brain Regions Involved in Mesocorticolimbic and Nigral Dopaminergic Circuits. Frontiers in pharmacology, 10, 193.
https://doi.org/10.3389/fphar.2019.00193
Lu, B., & Figurov, A. (1997). Role of neurotrophins in synapse development and plasticity. Reviews in the neurosciences, 8(1), 1–12.
https://doi.org/10.1515/revneuro.1997.8.1.1
Angelucci, F., Ricci, V., Pomponi, M., Conte, G., Mathé, A. A., Attilio Tonali, P., & Bria, P. (2007). Chronic heroin and cocaine abuse is associated with decreased serum concentrations of the nerve growth factor and brain-derived neurotrophic factor. Journal of psychopharmacology (Oxford, England), 21(8), 820–825.
https://doi.org/10.1177/0269881107078491
Zigova, T., Pencea, V., Wiegand, S. J., & Luskin, M. B. (1998). Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Molecular and cellular neurosciences, 11(4), 234–245.
https://doi.org/10.1006/mcne.1998.0684
Mash, D. C., Duque, L., Page, B., & Allen-Ferdinand, K. (2018). Ibogaine Detoxification Transitions Opioid and Cocaine Abusers Between Dependence and Abstinence: Clinical Observations and Treatment Outcomes. Frontiers in pharmacology, 9, 529.
https://doi.org/10.3389/fphar.2018.00529
Alper, K. R., Lotsof, H. S., Frenken, G. M., Luciano, D. J., & Bastiaans, J. (1999). Treatment of acute opioid withdrawal with ibogaine. The American journal on addictions, 8(3), 234–242.
https://doi.org/10.1080/105504999305848
Alper, K. R., Lotsof, H. S., & Kaplan, C. D. (2008). The ibogaine medical subculture. Journal of ethnopharmacology, 115(1), 9–24.
https://doi.org/10.1016/j.jep.2007.08.034
Maciulaitis, R., Kontrimaviciute, V., Bressolle, F. M., & Briedis, V. (2008). Ibogaine, an anti-addictive drug: pharmacology and time to go further in development. A narrative review. Human & experimental toxicology, 27(3), 181–194.
https://doi.org/10.1177/0960327107087802
Srivastava, A. B., Mariani, J. J., & Levin, F. R. (2020). New directions in the treatment of opioid withdrawal. Lancet (London, England), 395(10241), 1938–1948.
https://doi.org/10.1016/S0140-6736(20)30852-7
Baumann, M. H., Pablo, J. P., Ali, S. F., Rothman, R. B., & Mash, D. C. (2000). Noribogaine (12-hydroxyibogamine): a biologically active metabolite of the antiaddictive drug ibogaine. Annals of the New York Academy of Sciences, 914, 354–368.
https://doi.org/10.1111/j.1749-6632.2000.tb05210.x
Brown, T. K., & Alper, K. (2018). Treatment of opioid use disorder with ibogaine: detoxification and drug use outcomes. The American journal of drug and alcohol abuse, 44(1), 24–36.
Treating PTSD with Iboga
Olszewski, T. M., & Varrasse, J. F. (2005). The neurobiology of PTSD: implications for nurses. Journal of psychosocial nursing and mental health services, 43(6), 40–47.
https://doi.org/10.3928/02793695-20050601-09
Davis, A. K., Averill, L. A., Sepeda, N. D., Barsuglia, J. P., & Amoroso, T. (2020). Psychedelic Treatment for Trauma-Related Psychological and Cognitive Impairment Among US Special Operations Forces Veterans. Chronic Stress.
Treating Viruses and Bacterial Infections with Iboga
Rastogi, N., Abaul, J., Goh, K. S., Devallois, A., Philogène, E., & Bourgeois, P. (1998). Antimycobacterial activity of chemically defined natural substances from the Caribbean flora in Guadeloupe. FEMS immunology and medical microbiology, 20(4), 267–273.
https://doi.org/10.1111/j.1574-695X.1998.tb01136.x
Silva, E. M., Cirne-Santos, C. C., Frugulhetti, I. C., Galvão-Castro, B., Saraiva, E. M., Kuehne, M. E., & Bou-Habib, D. C. (2004). Anti-HIV-1 activity of the Iboga alkaloid congener 18-methoxycoronaridine. Planta medica, 70(9), 808–812.
https://doi.org/10.1055/s-2004-827227
Yordanov, M., Dimitrova, P., Patkar, S., Saso, L., & Ivanovska, N. (2008). Inhibition of Candida albicans extracellular enzyme activity by selected natural substances and their application in Candida infection. Canadian journal of microbiology, 54(6), 435–440.
https://doi.org/10.1139/w08-029
Yordanov, M., Dimitrova, P., Patkar, S., Falcocchio, S., Xoxi, E., Saso, L., & Ivanovska, N. (2005). Ibogaine reduces organ colonization in murine systemic and gastrointestinal Candida albicans infections. Journal of medical microbiology, 54(Pt 7), 647–653.
Treating Parkinson’s
Kowal, S. L., Dall, T. M., Chakrabarti, R., Storm, M. V., & Jain, A. (2013). The current and projected economic burden of Parkinson’s disease in the United States. Movement disorders : official journal of the Movement Disorder Society, 28(3), 311–318.
https://doi.org/10.1002/mds.25292
Davie C. A. (2008). A review of Parkinson’s disease. British medical bulletin, 86, 109–127.
https://doi.org/10.1093/bmb/ldn013
Schaser, A. J., Osterberg, V. R., Dent, S. E., Stackhouse, T. L., Wakeham, C. M., Boutros, S. W., Weston, L. J., Owen, N., Weissman, T. A., Luna, E., Raber, J., Luk, K. C., McCullough, A. K., Woltjer, R. L., & Unni, V. K. (2019). Alpha-synuclein is a DNA binding protein that modulates DNA repair with implications for Lewy body disorders. Scientific reports, 9(1), 10919.
https://doi.org/10.1038/s41598-019-47227-z
Sulzer, D., Alcalay, R. N., Garretti, F., Cote, L., Kanter, E., Agin-Liebes, J., Liong, C., McMurtrey, C., Hildebrand, W. H., Mao, X., Dawson, V. L., Dawson, T. M., Oseroff, C., Pham, J., Sidney, J., Dillon, M. B., Carpenter, C., Weiskopf, D., Phillips, E., Mallal, S., … Sette, A. (2017). T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature, 546(7660), 656–661.
https://doi.org/10.1038/nature22815
Lindestam Arlehamn, C. S., Dhanwani, R., Pham, J., Kuan, R., Frazier, A., Rezende Dutra, J., Phillips, E., Mallal, S., Roederer, M., Marder, K. S., Amara, A. W., Standaert, D. G., Goldman, J. G., Litvan, I., Peters, B., Sulzer, D., & Sette, A. (2020). α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nature communications, 11(1), 1875.
https://doi.org/10.1038/s41467-020-15626-w
Peterson, A. L., & Nutt, J. G. (2008). Treatment of Parkinson’s disease with trophic factors. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 5(2), 270–280.
https://doi.org/10.1016/j.nurt.2008.02.003
Oo, T. F., Kholodilov, N., & Burke, R. E. (2003). Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience, 23(12), 5141–5148.
https://doi.org/10.1523/JNEUROSCI.23-12-05141.2003
Gill, S. S., Patel, N. K., Hotton, G. R., O’Sullivan, K., McCarter, R., Bunnage, M., Brooks, D. J., Svendsen, C. N., & Heywood, P. (2003). Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nature medicine, 9(5), 589–595.
Love, S., Plaha, P., Patel, N. K., Hotton, G. R., Brooks, D. J., & Gill, S. S. (2005). Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nature medicine, 11(7), 703–704.
https://doi.org/10.1038/nm0705-703
Carnicella, S., He, D. Y., Yowell, Q. V., Glick, S. D., & Ron, D. (2010). Noribogaine, but not 18-MC, exhibits similar actions as ibogaine on GDNF expression and ethanol self-administration. Addiction biology, 15(4), 424–433.
https://doi.org/10.1111/j.1369-1600.2010.00251.x
He, D. Y., & Ron, D. (2006). Autoregulation of glial cell line-derived neurotrophic factor expression: implications for the long-lasting actions of the anti-addiction drug, Ibogaine. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 20(13), 2420–2422.
https://doi.org/10.1096/fj.06-6394fje
He, D. Y., & Ron, D. (2006). Autoregulation of glial cell line-derived neurotrophic factor expression: implications for the long-lasting actions of the anti-addiction drug, Ibogaine. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 20(13), 2420–2422.
https://doi.org/10.1096/fj.06-6394fje
Dustin R., Mandel Ronald J. “The Future of GDNF in Parkinson’s Disease” Frontiers in Aging Neuroscience VOLUME 12 2020 PAGE 388
https://www.frontiersin.org/articles/10.3389/fnagi.2020.593572/full
Treating Auto-Immune Disease
Jia, J., Cheng, J., Wang, C., & Zhen, X. (2018). Sigma-1 Receptor-Modulated Neuroinflammation in Neurological Diseases. Frontiers in cellular neuroscience, 12, 314.
https://doi.org/10.3389/fncel.2018.00314
Oxombre, B., Lee-Chang, C., Duhamel, A., Toussaint, M., Giroux, M., Donnier-Maréchal, M., Carato, P., Lefranc, D., Zéphir, H., Prin, L., Melnyk, P., & Vermersch, P. (2015). High-affinity σ1 protein agonist reduces clinical and pathological signs of experimental autoimmune encephalomyelitis. British journal of pharmacology, 172(7), 1769–1782.
https://doi.org/10.1111/bph.13037
Thompson, C., & Szabo, A. (2020). Psychedelics as a novel approach to treating autoimmune conditions. Immunology letters, 228, 45–54.
Ayahuascha vs iboga
https://pubmed.ncbi.nlm.nih.gov/26973523/
https://pubmed.ncbi.nlm.nih.gov/27683542/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522265/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5144684/
https://pubmed.ncbi.nlm.nih.gov/27918874/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5952178/
https://pubmed.ncbi.nlm.nih.gov/25806551/
https://pubmed.ncbi.nlm.nih.gov/29903051/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895707/
https://pubmed.ncbi.nlm.nih.gov/27230395/
https://pubmed.ncbi.nlm.nih.gov/22451652/
https://pubmed.ncbi.nlm.nih.gov/11303040/
https://pubmed.ncbi.nlm.nih.gov/11906717/
https://www.frontiersin.org/articles/10.3389/fphar.2019.00193/full
https://www.sciencedirect.com/science/article/pii/S0165247820303977
https://pubmed.ncbi.nlm.nih.gov/9626931/
https://pubmed.ncbi.nlm.nih.gov/15386189/
https://cdnsciencepub.com/doi/10.1139/W08-029?mobileUi=0&
https://pubmed.ncbi.nlm.nih.gov/15947429/
https://pubmed.ncbi.nlm.nih.gov/30272050/
https://www.tandfonline.com/doi/full/10.1080/00952990.2017.1310218
https://pubmed.ncbi.nlm.nih.gov/11085338/
https://journals.sagepub.com/doi/10.1177/2470547020939564
Success rate iboga
Zanda, M. T., & Fattore, L. (2017). Novel Psychoactive Substances: A New Behavioral and Mental Health Threat. Addictive Substances and Neurological Disease: Alcohol, Tobacco, Caffeine, and Drugs of Abuse in Everyday Lifestyles, 341–353.
https://doi.org/10.1016/B978-0-12-805373-7.00029-3
Wells, G. B., Lopez, M. C., & Tanaka, J. C. (1999). The effects of ibogaine on dopamine and serotonin transport in rat brain synaptosomes. Brain research bulletin, 48(6), 641–647.
https://doi.org/10.1016/s0361-9230(99)00053-2
He, D. Y., & Ron, D. (2006). Autoregulation of glial cell line-derived neurotrophic factor expression: implications for the long-lasting actions of the anti-addiction drug, Ibogaine. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 20(13), 2420–2422.
https://doi.org/10.1096/fj.06-6394fje
Staley, J. K., Ouyang, Q., Pablo, J., Hearn, W. L., Flynn, D. D., Rothman, R. B., Rice, K. C., & Mash, D. C. (1996). Pharmacological screen for activities of 12-hydroxyibogamine: a primary metabolite of the indole alkaloid ibogaine. Psychopharmacology, 127(1), 10–18.
https://doi.org/10.1007/BF02805969
Mash, D. C., Staley, J. K., Baumann, M. H., Rothman, R. B., & Hearn, W. L. (1995). Identification of a primary metabolite of ibogaine that targets serotonin transporters and elevates serotonin. Life sciences, 57(3), PL45–PL50.
https://doi.org/10.1016/0024-3205(95)00273-9
Baumann, M. H., Pablo, J. P., Ali, S. F., Rothman, R. B., & Mash, D. C. (2000). Noribogaine (12-hydroxyibogamine): a biologically active metabolite of the antiaddictive drug ibogaine. Annals of the New York Academy of Sciences, 914, 354–368.
https://doi.org/10.1111/j.1749-6632.2000.tb05210.x
Glick, S. D., Kuehne, M. E., Raucci, J., Wilson, T. E., Larson, D., Keller, R. W., Jr, & Carlson, J. N. (1994). Effects of iboga alkaloids on morphine and cocaine self-administration in rats: relationship to tremorigenic effects and to effects on dopamine release in nucleus accumbens and striatum. Brain research, 657(1-2), 14–22.
https://doi.org/10.1016/0006-8993(94)90948-2
Popik, P., & Skolnick, P. (1999). Pharmacology of Ibogaine and Ibogaine-Related Alkaloids. Alkaloids: Chemistry and Biology, 52(C), 197–231.
https://doi.org/10.1016/S0099-9598(08)60027-9
Hashimoto, K., & Ishiwata, K. (2006). Sigma receptor ligands: possible application as therapeutic drugs and as radiopharmaceuticals. Current pharmaceutical design, 12(30), 3857–3876.
https://doi.org/10.2174/138161206778559614
Noller, G. E., Frampton, C. M., & Yazar-Klosinski, B. (2018). Ibogaine treatment outcomes for opioid dependence from a twelve-month follow-up observational study. The American journal of drug and alcohol abuse, 44(1), 37–46.
https://doi.org/10.1080/00952990.2017.1310218
Davis, A. K., Barsuglia, J. P., Windham-Herman, A. M., Lynch, M., & Polanco, M. (2017). Subjective effectiveness of ibogaine treatment for problematic opioid consumption: Short- and long-term outcomes and current psychological functioning. Journal of psychedelic studies, 1(2), 65–73.
https://doi.org/10.1556/2054.01.2017.009
Schenberg, E. E., de Castro Comis, M. A., Chaves, B. R., & da Silveira, D. X. (2014). Treating drug dependence with the aid of ibogaine: a retrospective study. Journal of psychopharmacology (Oxford, England), 28(11), 993–1000.
https://doi.org/10.1177/0269881114552713
Davis, A. K., Averill, L. A., Sepeda, N. D., Barsuglia, J. P., & Amoroso, T. (2020). Psychedelic Treatment for Trauma-Related Psychological and Cognitive Impairment Among US Special Operations Forces Veterans. Chronic stress (Thousand Oaks, Calif.), 4, 2470547020939564.
https://doi.org/10.1177/2470547020939564
Gill, S. S., Patel, N. K., Hotton, G. R., O’Sullivan, K., McCarter, R., Bunnage, M., Brooks, D. J., Svendsen, C. N., & Heywood, P. (2003). Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nature medicine, 9(5), 589–595.
Koenig, X., Kovar, M., Boehm, S., Sandtner, W., & Hilber, K. (2014). Anti-addiction drug ibogaine inhibits hERG channels: a cardiac arrhythmia risk. Addiction biology, 19(2), 237–239.